Antioxidantes con productos bioactivos naturales de origen vegetal o sintéticos como complemento de la terapia en la infección VIH/sida

Autores/as

  • Rosario Gravier Hernández Instituto de Medicina Tropical “Pedro Kourí” (IPK). La Habana
  • Lizette Gil del Valle Instituto de Medicina Tropical “Pedro Kourí” (IPK). La Habana
  • Carlos Luis Rabeiro Martínez Instituto de Medicina Tropical “Pedro Kourí” (IPK). La Habana
  • Yusimit Bermúdez Alfonso Instituto de Medicina Tropical “Pedro Kourí". La Habana
  • María Carla Hernández González-Abreu Instituto de Medicina Tropical “Pedro Kourí". La Habana

Resumen

Introducción: El estrés oxidativo es considerado un cofactor en la patogénesis del virus de inmunodeficiencia humana. La influencia de este tipo de estrés en la progresión de la enfermedad ha afectado a pacientes tratados con terapia antirretroviral de alta eficacia. Según evidencias moleculares, esa terapia no reduce los niveles de daño oxidativo.

Objetivo: Compilar información sobre las principales implicaciones fisiopatológicas del metabolismo oxidativo asociadas a la infección VIH/sida y a la terapia antirretroviral, y las evidencias más actuales sobre las alternativas de suplementación antioxidante con productos sintéticos o bioactivos naturales de origen vegetal aplicadas en los pacientes infectados con ese virus.

Métodos: Se consultaron las bases de datos Medline, PubMed, SciELO, LILIACS y los motores de búsqueda Google y Google Scholar. Se descartaron las publicaciones que no se ajustaban al tema, tenían insuficientes datos de origen o las que eran propaganda no científica. Se analizaron 74 artículos publicados desde 1990 hasta 2017.

Resultados: La deficiencia de la ingesta de micronutrientes antioxidantes exacerba el estrés oxidativo en los infectados por ese virus. Las combinaciones de suplementos antioxidantes evaluadas en estudios clínicos a nivel internacional son diversas y sus resultados han sido controversiales Si se consideran los elementos previos, la suplementación antioxidante podría resultar beneficiosa, pues influye en las comorbilidades asociadas al progreso de esta infección y su tratamiento.

Conclusión: El uso de antioxidantes podría ser una alternativa para complementar el tratamiento del VIH dirigido a restaurar las funciones inmunes y minimizar los efectos tóxicos secundarios relacionados con los antirretrovirales y la oxidación durante el contagio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Coaccioli S, Crapa G, Fantera M, Del Giorno R, Lavagna A, Standoli M, et al. Oxidant/antioxidant status in patients with chronic HIV infection. Clin Ter [Internet]. 2010 [citado 13/02/2017]; 161(1):55-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20393680

Anthony H, Ashok A. Oxidants and antioxidants in the pathogenesis of HIV/AIDS. Open Reproductive Science Journal [Internet]. 2011 [citado 13/2/2017]; 3:154-61. Disponible en: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjYp5SVnbnhAhWHtlkKHV4UDycQFjAAegQIARAC&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F465c%2F0bc4519d35773afc191b410b5197f9e4a8f5.pdf&usg=AOvVaw1r8AE1ljzKCkOTnltfUYoU

Palipoch S, Koomhin P. Oxidative Stress-Associated Pathology: A Review. Sains Malaysiana [Internet]. 2015 [citado 15/2/2017]; 44(10):1441–51. Disponible en: http://www.ukm.my/jsm/pdf_files/SM-PDF-44-10-2015/09%20Sara%20Woot.pdf

García T. Indicaciones de profilaxis primaria de infecciones oportunistas en la infección por VIH. Protocolos de Práctica Asistencial [Internet]. 2006; 59(9):3861-2.

Lozano F, Domingo P. Tratamiento ARV de la infección por VIH. Enferm Infecc Microbiol Clin [Internet]. 2011 [citado 20/02/2017]; 29(6):455-65. Disponible en: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-linkresolver-tratamiento-antirretroviral-infeccion-por-el-S0213005X11000899

Eluwa G, Badru T, Akpoigbe K. Adverse drug reactions to antiretroviral therapy (ARVs): incidence, type and risk factors in Nigeria. BMC Clin Pharmacol [Internet]. 2012 [citado 23/02/2017]; 12(7):1-9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317861/

Bilbis L, Idowu D, Saidu Y, Lawal M, Njoku C. Serum levels of antioxidant vitamins and mineral elements of HIV positive subjects in Sokoto, Nigeria. Ann Afric Med [Internet]. 2010 [citado 13/02/2017]; 9(4):235-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20935424

Gil L, Martínez G, González I, Álvarez A, Molina R, Tarinas A, et al. Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res [Internet]. 2003 [citado 20/02/2017]; 47:217-24. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12591017

Schreck R, Rieber P, Baeuerle P. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF–kB transcription factor and HIV–1. EMBO J [Internet]. 1991 [citado 27/02/2017]; 10:2247–58. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20393680

Vallabhapurapu S, Karin M. Regulation and funtion of NF-kappaB transcription factors in the immune system. Annu Rev Immunol [Internet]. 2009 [citado 15/02/2017]; 27:693-733. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19302050

Kumar A, Takada Y, Boriek A, Aggarwal B. Nuclear factor-κB: its role in health and disease. Journal of Molecular Medicine [Internet]. 2004 [citado 15/02/2017]; 82(7):[434–48 pp.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15175863

Zhang H, Sang W, Ruan Z, Wang Y. Akt/Nox2/NF-κB signaling pathway is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation. Arch Biochem Biophys [Internet]. 2011 [citado 13/02/2017]; 505(2):266-72. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21029719

Gil L, Gravier R. Physical activity as antioxidant and palliative beneficial option in human immunodeficiency virus infection. Oxid Antioxid Med Sci [Internet]. 2013 [citado 13/02/2017]; 2(4):231-43. Disponible en: http://www.ejmoams.com/index.php?mno=39088

Price T, Ercal N, Nakaoke R. HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res [Internet]. 2005 [citado 13/02/2017]; 1045:57-63. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15910762

Ushio M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal [Internet]. 2009 [citado 20/02/2017]; 11:1289-99. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18999986

Fanales-Belasio E, Raimondo M, Suligoi B, Buttò S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanit? [Internet]. 2010 [citado 20/02/2017]; 46(1):5-14. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20348614

De Clercq E. The history of antiretrovirals: key discoveries over the past 25 years. Rev Med Virol [Internet]. 2009 [citado 15/02/2017]; 19:287–99. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19714702

Lewis W. Mitochondrial dysfunction and nucleoside reverse transcripatase inhibitor therapy: experimental clarifications and persistent clinical questions. Antiviral Res [Internet]. 2003 [citado 20/02/2017]; 58:189-97. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12767466

Day B, Lewis W. Oxidative stress in NRTI-induced toxicity: evidence from clinical experience and experiments in vitro and in vivo. Cardiovasc Toxicol [Internet]. 2004 [citado 27/02/2017]; 4(3):[207–16 pp.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15470269

Brinkman K. Evidence for mitochondrial toxicity: lactic acidosis as proof of concept. J HIV Ther [Internet]. 2001 [citado 13/02/2017]; 6(1):13-6. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11501196

Sattler F. Body habitus changes related to lipodystrophy. Clin Infect Dis [Internet]. 2003 [citado 13/02/2017]; 36:84-90. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12652376

Hulgan T, Hughes M, Sun X. Oxidant stress and peripheral neuropathy during antiretroviral therapy: an AIDS clinical trials group study. J Acquir Immune Defic Syndr [Internet]. 2006 [citado 15/02/2017];42(4):450–4. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16791116

Gil L. Pathophysiological implications of altered redox balance in HIV/AIDS infection: diagnosis and counteract intervention. In: Andreescu S, Hepel M, editors. Oxidative stress: Diagnostics, Prevention, and therapy: ACS Symposium Series; 2011: 39-70. Disponible en: https://www.researchgate.net/publication/278665612_Pathophysiological_Implications_of_Altered_Redox_Balance_in_HIVAIDS_Infection_Diagnosis_and_Counteract_Interventions

Mandas A, Lorio E, Congiu M, Balestrieri C, Mereu A, Cau D, et al. Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. Journal of Biomedicine and Biotechnology [Internet]. 2009 [citado 13/02/2017]; 18:67-79. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19884983

Awodele O, Olayemi S, Nwite J, Adeyemo T. Investigation of the levels of oxidative stress parameters in HIV and HIV-TB co-infected patients. J Infect Dev Ctries [Internet]. 2012 [citado 27/02/2017];6(1): 79-85. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22240433

Shin D, Martínez S, Parsons M, Jayaweera D, Campa A, Baum M. Relationship of Oxidative Stress with HIV Disease Progression in HIV/HCV Co-infected and HIV Mono-infected Adults in Miami. International Journal of Bioscience, Biochemistry and Bioinformatics [Internet]. 2012 [citado 20/02/2017]; 2(3):217-33. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23504530

Feller L, Lemmer J. Insights into pathogenic events of HIV-associated Kaposi sarcoma and immune reconstitution syndrome related Kaposi sarcoma. Infectious Agents and Cancer [Internet]. 2008 [citado 23/02/2017]; 3(1):1-9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265259/

Li X, Feng J, Sun R. Oxidative Stress Induces Reactivation of Kaposi's Sarcoma-Associated Herpesvirus and Death of Primary Effusion Lymphoma Cells. J Virol [Internet]. 2011 [citado 15/02/2017]; 85(2):715–24. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21068240

Hussain S, Hofseth L, Harris C. Radical causes of cancer. Nat Rev Cancer [Internet]. 2003 [citado 13/02/2017]; 3:276–85. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12671666

Herzenberg L, De Rosa S, Dubs J, Roederer M, Anderson M, Ela A, et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci [Internet]. 1997 [citado 13/02/2017]; 94:1967-72. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/9050888

De Rosa S, Zaretsky M, Dubs J, Roederer M, Anderson M, Green A, et al. N-acetylcysteine replenishes glutathione in HIV infection. Eur J Clin Invest [Internet]. 2000 [citado 13/02/2017]; 30:915-29. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11029607

Batterham M, Gold J, Naidoo D, Lux O, Sadler S, Bridle S, et al. A preliminary open label dose comparison using an antioxidant regimen to determine the effect on viral load and oxidative stress in men with HIV/AIDS. European Journal of Clinical Nutrition [Internet]. 2001 [citado 13/02/2017];55:107-14. Disponible en: https://www.nature.com/articles/1601124

Sauka M, Selga G, Skesters A, Silova A, Westermarck T, Latvus A, et al. Impact of CoQ10, L-Carnitine and Cocktail Antioxidants on Oxidative Stress Markers in HIV Patients — Mini Review and Clinical Trial. In: Atroshi F, editor. Pharmacology and Nutritional Intervention in the Treatment of Disease: InTech; 2014:241-53. Disponible en: https://www.intechopen.com/books/pharmacology-and-nutritional-intervention-in-the-treatment-of-disease/impact-of-coq10-l-carnitine-and-cocktail-antioxidants-on-oxidative-stress-markers-in-hiv-patients-mi

Arendt B, Boetzer A, Lemoch H, Winkler P, Rockstroh J, Berthold H, et al. Plasma antioxidant capacity of HIV-seropositive and healthy subjects during long-term ingestion of fruit juices or a fruit ± vegetable-concentrate containing antioxidant polyphenols. European Journal of Clinical Nutrition [Internet]. 2001 [citado 15/02/2017]; 55:786–92. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11528495

Gil L, Serrano T, Calderón O, Núñez F, Tápanes R, Pérez J. Efecto del Vimang® en pacientes VIH/sida. Rev Cubana Med Trop [Internet]. 2010 [citado 27/02/2017]; 62(3):200-6. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602010000300006

Figueira M, A Sá L, Vasconcelos A, Moreira D, Laurindo P, Ribeiro D, et al. Nutritional supplementation with the mushroom Agaricus sylvaticus reduces oxidative stress in children with HIV. Can J Infect Dis Med Microbiol [Internet]. 2014 [citado 13/02/2017]; 25(5):257-64. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211349

Winter F, Emakam F, Kfutwah A, Hermann J, Azabji-Kenfack M, Krawinkel M. The Effect of Arthrospira platensis Capsules on CD4 T-Cells and Antioxidative Capacity in a Randomized Pilot Study of Adult Women Infected with Human Immunodeficiency Virus Not under HAART in Yaoundé, Cameroon. Nutrients [Internet]. 2014 [citado 20/02/2017]; 6:2973-86. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25057105

Halliwell B. The wanderings of a free radical. Free Radical Biology & Medicine [Internet]. 2009 [citado 13/02/2017]; 46:531–42. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19111608

Kregel K, Zhang H. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol [Internet]. 2007 [citado 27/02/2017]; 292:18-36. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16917020

Valko M, Leibfritz D, Moncol J, Cronin M, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol [Internet]. 2007 [citado 15/02/2017]; 39:44-84. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16978905

Roberts R, Smith R, Safe S, Szabo C, Tjalkens R, Robertson F. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology [Internet]. 2010 [citado 15/02/2017]; 276(2):85-94. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20643181

Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. Fourth ed: Oxford: University Press; 2007 [citado 15/2/2017]. Disponible en: https://www.amazon.es/Radicals-Biology-Medicine-Barry-Halliwell/dp/019856869X

Lushchak V. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact [Internet]. 2014 [citado 13/02/2017]; 224:164-75. Disponible en: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwipjO6iornhAhVLo1kKHRtIAOAQFjAAegQIBRAB&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F25452175&usg=AOvVaw1mbaKnGN_IbjZC0alR8uv1

Schieber M, Chandel N. ROS function in redox signaling and oxidative stress. Curr Biol [Internet]. 2014 [citado 27/02/2017]; 24:453–62. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24845678

Droge W. Free radicals in the physiological control of cell function. Physiol Rev [Internet]. 2002 [citado 15/02/2017]; 82(1):47-95. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11773609

Gil L, Martínez G, León O. El ambiente redox y el VIH/SIDA. In: Martínez G, editor. Ambiente Antioxidante/Prooxidante. Su impacto médico: Editorial Aracne; 2012: 359-72

Grune T. Oxidants and antioxidants defense systems. The handbook of Enviromental Chemistry 2.0. New York: Springer Berlin Heidelberg; 2005 [citado 13/02/2017]. Disponible en: https://www.springer.com/gb/book/9783540224235

Al-Dalaen S, Al-Qtaitat A. Oxidative stress versus antioxidants. American Journal of Bioscience and Bioengineering [Internet]. 2014 [citado 13/02/2017]; 2(5):60-71. Disponible en: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjft_i2tLnhAhWD2FkKHS4yCUQQFjAAegQIAhAB&url=http%3A%2F%2Fwww.sciencepublishinggroup.com%2Fjournal%2Fpaperinfo%3Fjournalid%3D217%26paperId%3D10003837&usg=AOvVaw3_B0Rc47OokMI25bdsPtbY

Devasagayam T, Tilak J, Boloor K, Sane K, Ghaskadbi S, Lele R. Free radicals and antioxidants in Human Health: Current status and future prospects. J Assoc Physicians India [Internet]. 2004 [citado 20/02/2017]; 52:794-803. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15909857

Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol [Internet]. 2015 [citado 23/02/2017]; 6:183-97. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26233704

Gutteridge J, Halliwell B. Antioxidants: Molecules, medicines, and myths. Biochem Biophys Res Commun [Internet]. 2010 [citado 13/02/2017]; 393:561-4. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20171167

Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol [Internet]. 2015 [citado 20/02/2017]; 4:180–3. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25588755

Armitage M, Wingler K, Schmidt H, La M. Translating the oxidative stress hypothesis into the clinic: NOX versus NOS. Journal of molecular medicine [Internet]. 2009 [citado 15/02/2017]; 87(11):1071-6. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19834654

Alfadda A, Sallam R. Reactive oxygen species in health and disease. Journal of biomedicine & biotechnology [Internet]. 2012 [citado 23/02/2017]; 2012; 9 (36):486. Disponible en: https://www.hindawi.com/journals/bmri/2012/936486

Mani S. Production of reactive oxygen species and its implication in human diseases. Rani V, Yadav U, editors. New Delhi: Springer; 2015 [citado 23/02/2017]. Disponible en: https://link.springer.com/chapter/10.1007/978-81-322-2035-0_1

Cacciapuoti F. Oxidative Stress as “Mother” of Many Human Diseases at Strong Clinical Impact. J Cardiovasc Med Cardiol [Internet]. 2016 [citado 13/02/2017]; 3(1):1-6. Disponible en: https://www.peertechz.com/Cardiovascular-Medicine-Cardiology/JCMC-3-120.php/articles.php

Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med [Internet]. 2005 [citado 15/02/2017]; 26:340-52. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16099495

Vassimon H, Deminice R, Machado A, Monteiro J, Jordão A. The association of lipodystrophy and oxidative stress biomarkers in HIV-infected men. Curr HIV Res [Internet]. 2010 [citado 13/02/2017]; 8(5):364-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20353389

Deresz L, Sprinz E. Regulation of oxidative stress in response to acute aerobic and resistance exercise in HIV-infected subjects: a case–control study AIDS Care [Internet]. 2010 [citado 20/02/2017]; 22(11):1410-7. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20640951

Peternelj T, Coombes J. Antioxidant suplementation during exercise Training: Beneficial or detrimental? Sports Med [Internet]. 2011 [citado 15/02/2017]; 41:1043-63. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22060178

Iwu A, Duru C, Uwakwe K, Obionu C, Diwe K, Abah S. Effect of Multiple Micronutrient Supplementation on CD4 T Cell levels of Clinically Stable HIV patients on Highly Active Antiretroviral Therapy; A Randomized Control Crossover Trial. Amer J Clin Med Res [Internet]. 2016 [citado 20/02/2017]; 4(1):1–6. Disponible en: https://www.semanticscholar.org/paper/Effect-of-Multiple-Micronutrient-Supplementation-on-Iwu-Duru/25f27ee2b3f8054df0584a7dd831154aafba4f13

Guwatudde D, Wang M, Ezeamama A, Bagenda D, Kyeyune R, Wamani H, et al. The effect of standard dose multivitamin supplementation on disease progression in HIV infected adults initiating HAART: a randomized double blind placebo-controlled trial in Uganda. BMC Infectious Diseases [Internet]. 2015 [citado 13/02/2017]; 15(1):348-58. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545778/

Iwu A, Uwakw K, Dur C, Diwe K, Meren I, Steve A, et al. Multiple Micronutrient Supplementation Effect on Vital Metabolic parameters of Stable HIV Patients on Long term Highly Active Antiretroviral Therapy; A Randomized Crossover Trial. Int J Curr Microbiol App Sci [Internet]. 2016 [citado 27/02/2017]; 5(3):776-86. Disponible en: https://www.researchgate.net/publication/298210173

Tabe F, Yanou N, Kamdje A, Ntso A. Oxidative Role of HIV/AIDS. Antiretroviral Drugs and Medicinal Plants with Anti-HIV Activity. Journal of Diseases and Medicinal Plants [Internet]. 2015 [citado 13/02/2017]; 1(5):68-75. Disponible en: https://scholar.google.com.cu/scholar?q=Oxidative+Role+of+HIV/AIDS:+Antiretroviral+Drugs+and+Medicinal+Plants+with+Anti-HIV+Activity&hl=es&as_sdt=0&as_vis=1&oi=scholart

Lash L. Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chemico-Biological Interactions [Internet]. 2006 [citado 27/02/2017];163(1):54-67. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16600197

Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa J. Mitochondrial glutathione, a key survival antioxidant. Antioxidants and Redox Signaling [Internet]. 2009 [citado 20/02/2017]; 11(11):2685-700. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19558212

Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clinica Chimica10 Acta [Internet]. 2003 [citado 13/02/2017]; 33(1):19-39. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12809732

Cohly H, Asad S, Das S, Angel M, Rao M. Effect of Antioxidant (Turmeric, Turmerin and Curcumin) on Human Immunodeficiency Virus. Int J Mol Sci [Internet]. 2003 [citado 20/02/2017]; 4:22-33. Disponible en: https://www.researchgate.net/publication/26548212_Effect_of_Antioxidant_Turmeric_Turmerin_and_Curcumin_on_Human_Immunodeficiency_Virus

Kapewangoloa P, Husseinb A, Meyer D. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J Ethnopharmacol [Internet]. 2013 [citado 23/02/2017]; 149(1):184-90. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23811046

Sareedenchai V, Wiwat C, Wongsinkongman P, Soonthornchareonnon N. In vitro Testing of Anti-HIV and Antioxidative Activities of Argyreia nervosa (Burm.f) Bojor Leaves. Mahidol University Journal of Pharmaceutical Sciences [Internet]. 2014 [citado 15/02/2017]; 41(4):[47-53]. Disponible en: https://www.pharmacy.mahidol.ac.th/journal/_files/2014-41-4_47-53.pdf

Narayan C, Ravishankar R. Anti-HIV-1 Activity of Ellagic acid Isolated from Terminalia paniculata. Free Rad Antiox [Internet]. 2016 [citado 13/02/2017]; 6(1):[101-8]. Disponible en: https://www.antiox.org/article/36

Jiang Y, Tzi Bun N, Liu Z, Wang C, Li N, et al.

Immunoregulatory and anti-HIV-1 enzyme activities of antioxidant components from lotus (Nelumbo nucifera Gaertn) rhizome. Biosci Rep [Internet]. 2011 [citado 20/02/2017]; 31:[381–90 pp.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21114474

Feng W, Takada Y, Inagaki Y, Saitoh Y, Chang M, Amet T, et al. Pycngenol, a Procyanidin-Rich extract from French Maritime Pine inhibits intracellular replication of HIV-1 as well as its binding to host cells. Jpn J Infect Dis [Internet]. 2008 [citado 27/02/2017]; 61:279-85. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18653969

Descargas

Publicado

2019-06-26

Cómo citar

1.
Gravier Hernández R, Gil del Valle L, Rabeiro Martínez CL, Bermúdez Alfonso Y, Hernández González-Abreu MC. Antioxidantes con productos bioactivos naturales de origen vegetal o sintéticos como complemento de la terapia en la infección VIH/sida. Rev Cubana de MNT [Internet]. 26 de junio de 2019 [citado 24 de noviembre de 2024];2(1). Disponible en: https://revmnt.sld.cu/index.php/rmnt/article/view/79

Número

Sección

Artículo de revisión