Antilisterial Activity of Ethanolic Extract of Moringa oleifera Against Listeria monocytogenes ATCC 19115
Keywords:
extract, disc diffusion, minimum inhibitory concentrations, inhibition, Moringa oleifera.Abstract
Introduction: Food safety is a frequent public health problem worldwide, since food products are prone to contamination by pathogens.
Objective: To evaluate the effect of concentrations of 10, 40 and 60 mg/mL of ethanolic extract of Moringa oleifera seed on the survival of Listeria monocytogenes ATCC 19115.
Methods: An experimental investigation was conducted with controlled procedures to evaluate the efficacy of ethanolic extract of Moringa oleifera against the Listeria monocytogenes strain ATCC 19115. To obtain the ethanolic extract of Moringa oleifera, the Soxhlet extraction method was used. Antibacterial survival was determined by culturing Listeria monocytogenes, reactivated in BHI broth and standardized to tube No. 0.5 of Mac Farland's nephelometer. Bacterial survival versus the extract was determined using the Mueller-Hinton broth tube dilution method and measured by plate count compared to a control.
Results: The decrease of colonies was observed in the three concentrations used in direct proportion with the concentration; the higher the concentration, the greater the effect.
Conclusions: It was determined that there are significant differences between each concentration of ethanolic extract with the control, being the concentration of 60 mg / mL the one with the greatest inhibitory effect on Listeria monocytogenes than the concentrations of 10 and 40 mg / mL (p < 0.05).
Downloads
References
Cooper AL, Carrillo CD, DeschêNes M, Blais BW. Genomic markers for quaternary ammonium compound resistance as a persistence indicator for Listeria monocytogenes contamination in food manufacturing environments. Journal of food protection. 2021;84(3):389-98. DOI: 10.4315/JFP-20-328
Johnson TW, Milton DL, Johnson K, Carter H, Hurt RT, Mundi MS, et al. Comparison of microbial growth between commercial formula and blenderized food for tube feeding. Nutrition in Clinical Practice. 2019;34(2):257-63. DOI: 10.1002/ncp.10226
Timme RE, Rand H, Shumway M, Trees EK, Simmons M, Agarwala R, et al. Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance. PeerJ. 2017;5:e3893. DOI: 10.7717/peerj.3893
Mazaheri T, Cervantes Huamán BRH, Bermúdez Capdevila M, Ripolles Avila C, Rodríguez Jerez JJ. Listeria monocytogenes biofilms in the food industry: is the current hygiene program sufficient to combat the persistence of the pathogen? Microorganisms. 2021;9(1):181. DOI: 10.3390/microorganisms9010181
Amajoud N, Leclercq A, Soriano JM, Bracq-Dieye H, El Maadoudi M, Senhaji NS, et al. Prevalence of Listeria spp. and characterization of Listeria monocytogenes isolated from food products in Tetouan, Morocco. Food Control. 2018;84:436-41. DOI: 10.1016/j.foodcont.2017.08.023
Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018;16(1):32-46. DOI: 10.1038/nrmicro.2017.126
Zhu Q, Gooneratne R, Hussain MA. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods. 2017;6(3):21. DOI: 10.3390/foods6030021
De Souza Barboza TJ, Fonseca Ferreira A, De Paula Rosa Ignacio AC, Albarello N. Antimicrobial activity of anonna mucosa (Jacq.) grown in vivo and obtained by in vitro culture. Brazilian J Microbiol. 2015;46(3):785-9. DOI: 10.1590/S1517-838246320140468
Arce Gil Z, Barrera Aguinaga A, Herrera Sánchez E, Suárez Zulueta MG, Rojas Acuña D, Suclupe Farro E, et al. Efecto inhibitorio del extracto de semilla de Moringa oleifera sobre Escherichia coli β-lactamasas de espectro extendido. Med Natur. 2020 [acceso 10/03/2021];14(1):91-4. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7248982
Acosta Quiroz J, Verástegui Gaona C, Iglesias Osores S, Moreno Mantilla M, Failoc Rojas V. Efecto inhibitorio, in vitro del extracto etanólico de Plantago Major Llantén frente a cepas de staphylococcus aureus y streptococcus β-hemolíticos. Med. Natur. 2019 [acceso 10/07/2019];13(2):7-11. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6985215
Ahón Ríos K, Iglesias Osores S. Efecto antibacteriano del aceite esencial de zingiber officinale sobre Staphylococcus aureus ATCC 25923 MRSA. Med. Natur. 2021 [acceso 10/07/2019],15(2):23-6. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7998124
Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015;16(6),12791-835. DOI: 10.3390/ijms160612791
Costa RA, De Sousa OV, Hofer E, Mafezoli J, Barbosa FG, Dos Fernandes Vieira RHS. Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species. Biomed Res Int. 2017;2017. DOI: 10.1155/2017/7963747
Onsare JG, Arora DS. Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. J Appl Microbiol. 2015;118(2):313-25. DOI: 10.1111/jam.12701
Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. Int J Mol Sci. 2016;17(12):2141. DOI: 10.3390/ijms17122141
Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol. 2006;55(6):645-59. DOI: 10.1099/jmm.0.46495-0
Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, et al. Antimicrobial resistance in developing countries. Part I: recent trends and current status. The Lancet Infectious diseases. 2005;5(8):481-93 DOI: 10.1016/S1473-3099(05)70189-4
Deans SG, Noble RC, Hiltunen R, Wuryani W, Pénzes LG. Antimicrobial and antioxidant properties of Syzygium aromaticum (L.) Merr. & Perry: Impact upon bacteria, fungi and fatty acid levels in ageing mice. Flavour Fragr J. 1995;10(5):323-8. DOI: 10.1002/ffj.2730100507
Lanciotti R, Braschi G, Patrignani F, Gobbetti M, De Angelis M. How Listeria monocytogenes Shapes Its Proteome in Response to Natural Antimicrobial Compounds. Front Microbiol. 2019;10:437. DOI: 10.3389/fmicb.2019.00437
Oluduro OA, Aderiye BI, Connolly JD, Akintayo ET, Famurewa O. Characterization and Antimicrobial Activity of 4-(β-d-Glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl thiocarboxamide; a Novel Bioactive Compound from Moringa oleifera Seed Extract. Folia Microbiol. 2010;55(5):422-6. DOI: 10.1007/s12223-010-0071-0
Ibrahim SM, Sawsan AO, Khaled MA khleifat, Haitham Q, Walid AR, Osama YA. Assessment of the antibacterial effects of Moringa peregrina extracts. African J Microbiol Res. 2015;9(51):2410-4. DOI: 10.5897/AJMR2015.7787